Probabilistic Detection-based Particle Filter for Multi-target Tracking

نویسندگان

  • Xuan Song
  • Jinshi Cui
  • Hongbin Zha
  • Huijing Zhao
چکیده

In this paper, we present a Probabilistic Detection-based Particle Filter (PD-PF) for tracking a variable number of interacting targets. When the objects do not interact with each other, our method performs like the deterministic detection-base methods. When the objects are in close proximity, the interactions and occlusions are modelled by a mixed proposal constructed by probabilistic detections and information from dynamic models. Specially, prior of detection-reliability minimizes the influence of non-detection or false alarm in the tracking. Moreover, we run independent PD-PF for each target, such that particles are sampled in a small state space, thus our method not only obtains a better approximation of posterior than joint particle filter or independent particle filter when interactions occur, but also has an acceptable computational complexity. Different evaluations demonstrate the validity and efficiency of the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Target Tracking Algorithm Based on Particle Filter and Genetic Algorithm

In this paper, we propose an efficient hybrid Particle Filter (PF) algorithm for video tracking by employing a genetic algorithm to solve the sample impoverishment problem. In the presented method, the object to be tracked is selected by a rectangular window inside which a few numbers of particles are scattered. The particles’ weights are calculated based on the similarity between feature vecto...

متن کامل

Maneuvering Multi-Target Tracking Algorithm Based on Modified Generalized Probabilistic Data Association

Aiming at the problem of strong nonlinear and effective echo confirm of multi-target tracking system in clutters environment, a novel maneuvering multi-target tracking algorithm based on modified generalized probabilistic data association is proposed in this paper. In view of the advantage of particle filter which can deal with the nonlinear and non-Gaussian system, it is introduced into the fr...

متن کامل

A New Modified Particle Filter With Application in Target Tracking

The particle filter (PF) is a novel technique that has sufficiently good estimation results for the nonlinear/non-Gaussian systems. However, PF is inconsistent that caused mainly by loss of particle diversity in resampling step and unknown a priori knowledge of the noise statistics. This paper introduces a new modified particle filter called adaptive unscented particle filter (AUPF) to overcome th...

متن کامل

Multi-Sensor Single Target Bearing-Only Tracking in Clutter

Multiple unattended ground sensors are deployed for surveillance, monitoring the movement of troops, military vehicles, and targeting. Usually, the probability of detection ( D P ) of an UGS is low and the false alarm density (FAD) is high. The particle filter (PF) and range-parametrized extended Kalman filter (RPEKF) have been used previously to produce improved results for the single sensor s...

متن کامل

Unscented Auxiliary Particle Filter Implementation of the Cardinalized Probability Hypothesis Density Filters

The probability hypothesis density (PHD) filter suffers from lack of precise estimation of the expected number of targets. The Cardinalized PHD (CPHD) recursion, as a generalization of the PHD recursion, remedies this flaw and simultaneously propagates the intensity function and the posterior cardinality distribution. While there are a few new approaches to enhance the Sequential Monte Carlo (S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008